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Abstract— The migration from a monolithic to a microservice
architecture is a recurring step in many software projects. With
the increasing distributed nature of the transformed system, new
challenges for data consistency and deployment arise, which can
be counteracted by the integration of microservices patterns.
However, the use of such patterns is complex and time-consuming.
In this paper, we describe a case study of a migration process
of the learning management system Artemis which consists of
two phases. The first phase shows the transformation from a
monolithic architecture to a microservice architecture with a
shared database. It sets as a goal the identification of microservice
boundaries, the decomposition of the monolith application into
multiple distributed entities, as well as their orchestration in
a cloud-ready environment. The second phase migrates the
shared database into multiple databases based on the database-
per-microservice pattern. While analyzing the current Artemis
architecture, we describe a gradual refactoring of an existing
application to decompose Artemis into multiple subsystems. We
developed Architect, a framework which is based on a domain-
specific language for building dependable distributed systems as
a template to ensure the data consistency of the distributed
transactions using the Saga pattern. We decomposed Artemis
into 3 microservices and provided the migration concept from
shared-database to database-per-microservice using Architect.
The framework helped to reduce the complexity of using the
Saga pattern. It introduced the eventual consistency in a dis-
tributed database system and decreased the coupling of the
data storage. The migration to a microservice architecture solves
many problems of a monolith application, but introduces new
challenges and increases the complexity of the overall system.
Architect focuses on greenfield project, but currently does not
provide a software evolution approach. We will add support for
reengineering projects, which can facilitate the migration process
of existing system.

Index Terms—architect, microservices, migration, monolith,
sagas

I. INTRODUCTION

The monolithic architecture is simple, easy to develop,
test and deploy. As the code base grows, it becomes highly
coupled, hard to maintain and scale [1]. On the other side,
the microservice architecture solves those issues by proposing
several small applications that work as a single one. Each
microservice is easier to maintain and scale. We deploy the
microservices independently, which means we can scale only
those microservices that receive more traffic [2]. Moreover,
if one microservice fails, the system will continue to operate,
and the users can use the microservices which have not failed.

Although the microservice architecture solves many of the
monolith’s problems, it also introduces new challenges for the
development and deployment of the system. It becomes more
complex to test, debug and deploy. The developers need more
knowledge to maintain and develop it [2].

Despite all challenges that the microservice architecture
introduces, many companies decide to migrate to the mi-
croservice architecture. Their main reason is better system
availability and efficient resource usage of a microservice
system [3]. They also take advantage of the microservice
architecture to allocate small development teams on separate
microservice(s) and split the responsibility. This approach
helps to reduce the communication overhead and the need for
coordination between the teams [4].

II. MOTIVATION

There are two major common reasons why companies de-
cide to migrate to microservices. The first is that the monolith
application is hard to maintain, the system takes a long time to
start, and it takes more development efforts to make changes
due to high coupling and complexity [3]. Another reason is
the need for high availability and better scalability to handle
the changing traffic dynamically [3].

The case study of this article is the migration to microser-
vices of Artemis – an open-source system for interactive
learning. It provides automated assessment tools which help to
decrease the tutors’ efforts [5]. The initial Artemis architecture
is monolithic. Artemis has similar problems as the common
ones that we already described. Due to the high user load,
Artemis requires better scaling, which the Artemis team has
currently solved by deploying several Artemis instances. This
scaling approach is not optimal, though. It leads to higher
resource consumption, which is more costly and inefficient for
the environment. Another issue is the slow build and server
tests execution. The microservice architecture helps to reduce
those times, allowing each microservice’s actions to run in
parallel.

These issues motivate the need to migrate Artemis to mi-
croservices architecture. The digital transformation of Artemis
from monolithic architecture can solve the above problems.
Due to the distributed nature of microservices, developers
can build and deploy them independently by fully automated
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deployment pipelines. This procedure will accelerate the soft-
ware development life-cycle of Artemis, reduce its downtime,
and additionally make the overall Learning Management Sys-
tem (LMS) more fault-tolerant [6].

III. OBJECTIVES

The migration of Artemis consists of two phases. The first is
to set the foundation of the new microservice architecture by
extracting microservices from the monolith using the shared
database pattern. The second phase aims to migrate the shared
database to database-per-service.

The main objectives of the first phase includes the extraction
of two microservices. Since there is a high coupling in the
database usage, in order to minimize the migration risk,
Artemis continues using the shared database pattern. The main
goal is to set the microservices boundaries and to define
a migration process to use in the microservice extraction.
Another important part of the first phase is the Kubernetes
deployment. Kubernetes helps to automate deployments, scale,
and manage the applications. Moreover, it helps to achieve
high availability thanks to its ability to automatically restart
failed containers and automatic scaling features [7].

In this paper, we focus on the second phase of the migra-
tion. It aims to migrate the shared database into a database
per microservice. The shared database is a limitation of the
new architecture. Decomposing the database layer into many
smaller databases per microservice is a time-consuming and
critical process [8]. It requires the semantic distribution of the
repository to different microservices domains, as well as the
mechanism for handling the distributed transactions to keep
the data consistent [9]. We point out the necessary steps and
the concept of successive migration in section IV.

In the next phase of the migration process, we want to
address another limitation, which is the increased complexity
of the local development of the application, debugging and
the development of integration tests. The deployment of the
application is also more complex, it requires knowledge of
Kubernetes orchestration system, its resources and various
configuration options. This has a steep learning curve and
can overwhelm developers, especially at the beginning of the
learning process [10]. We plan to counteract the challenges
by using the Architect framework for building dependable
distributed systems.

IV. METHOD

In the next sections, we describe the methods that will help
us eliminate the challenges from the first migration phase.
We focus primarily on the concept of incremental database
migration, highlighting the resulting challenges, and then how
the Architect framework can help solve them.

A monolithic application architecture uses the shared
database pattern for the implementation of data layer, which
takes responsibility for the persistence of the application data.
The migration to microservices also changes the paradigm of
storage responsibility. Thus, the aspect of information hiding
becomes important because several microservices access the

data from this point instead of one monolithic application [2],
[11].

Furthermore, the focus of the business logic within a
subsystem implementation is on high cohesion, which implies
that a particular microservice must have the own associated
data storage. The use of shared database pattern violates this
principle in a microservice environment, so developers should
continue to use it only when the provided data is read-only or
static [2], [11].

To ensure information hiding, data ownership and high
cohesion, the microservices encapsulate their data and make
the methods available for data access via their own Application
Programming Interfaces (APIs). Therefore, it is necessary to
split the monolith not only at the application level but also at
the data level to ensure these properties.

While analyzing possible approaches to database migration,
we found that the move from a shared database to database-
per-microservice pattern is difficult to achieve via a big-
bang approach. Each shared database has its specifics that
developers should consider during the migration. For example,
the database engine type plays an important role: it can be a
relational or non-relational database. The number of tables, as
well as the primary-foreign key relationships, can influence the
complexity of the migration process. If developers can group
the database tables, which contain many interconnections, by
a specific bounded context - they can easily extract and assign
them to a specific microservice; otherwise the migration can
be critical for the existing production system, as they must
separate already persisted data as well. In addition, the number
and frequency of the data requests come into play, as well as
the general load on the server node, which hosts the database.

To meet all these requirements, we analyzed different
database migration patterns and tried to categorize them,
building a taxonomy. This taxonomy allows us to design a
successive migration concept using a decision process based
on certain prerequisites of a monolithic database to provide
support to the software architects or database specialists.

We design the decision-making process using the Unified
Modeling Language (UML) activity diagram, putting together
a sequence of different patterns based on the requirements
of a current system which we want to use to migrate the
monolithic database [12]. The goal of the migration process
is to decompose this shared database to the database-per-
microservice pattern.

The following path for the case study in Figure 1 shows the
patterns’ selection in green color using the directed arrows:

(1) Repository per Bounded Context → (2) Database per
Bounded Context → (3) Monolith Data Access Layer →

(4) Database Wrapping Service → (5) Change Data
Ownership → (6) Data Synchronization → (7) Tracer

Write.

The patterns result chain consists of 7 steps and represents
a pure recommendation to reach the final result incrementally.
Artemis Learning Management System (LMS) is a system that
is already in productive use, so we do not recommend using the
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Fig. 1. UML activity diagram describing the path from a shared database to
database-per-microservice pattern.

big-bang approach for such type of systems. The conditional
nodes in the diagram consider the properties we defined
before: information hiding, data ownership and high cohesion.
The initial node stands for the shared database, which we have
as input for the second phase after the first migration phase.
The final node of the selected path symbolizes the desired
migration result - database-per-microservice integration. For
the simplicity reasons, we adapted the activity diagram for
the Artemis case study, as we designed many more conditions
nodes, which are not relevant in the given context.

First, there is the need to check if database decomposition is
possible, which is the case for Artemis LMS. The next action is
to chain a sequence of patterns to execute the first preparatory
migration steps (1)-(4) for database decomposition. These
steps ensure the information hiding property in the future de-
composed system. Then, using pattern (5) follows the transfer
of data ownership to the previously extracted microservices
and finally with pattern (6)-(7), the decomposition finishes by
synchronizing the data to the new migrated databases. The last
two steps ensure the high cohesion of the decomposed system.

In this section, we presented a concept for a step-by-step mi-
gration of the shared database to a database-per-microservice
pattern. The distributed database system ensures important

properties in a microservice architecture: information hiding,
high cohesion and data ownership. However, it also introduces
a new challenge that leads to eventual consistency - the
distributed transactions. In the next section, we will go into
this topic in detail and show possible ways how developers
can solve this challenge by integrating Saga pattern.

A. Distributed Transactions using Saga pattern

The Saga pattern manages distributed transactions that
span over several microservices. It can be implemented as
event choreography, where a microservice that has executed
a transaction, publishes an event to which other microservices
subscribe and execute their own transactions [13]. This flow
continues until no microservice publishes an event. Another
way to implement the Saga pattern is by orchestration where
a central coordinator listens to the events coming from the
microservices and triggers other microservices’ events [13].

Artemis also requires handling of distributed transactions.
The plan for Artemis is to use the orchestrator implementation
approach as it reduces the risk of introducing cyclic dependen-
cies, which could happen in event choreography. Moreover, in
orchestration, all the logic is in one place, which makes the
process easier to change and trace [13].

An example for a distributed transaction in Artemis is
deletion of a course. Each course has many components – exer-
cises, lectures, students’ submissions, etc. Courses are handled
by the Artemis application server, while lectures – by the
Lecture microservice. Therefore, this distributed transaction
spans over two microservices. When an administrator wants
to remove a course, the system should delete the course and
its related components. In case of errors, all should remain
consistent in the database.

Figure 2 describes Artemis’ overall architecture. It includes
Single Page Application (SPA) client application developed
with the Angular Framework1, API Gateway and two mi-
croservices—the User Management microservice and the Lec-
ture microservice, and the Artemis application server.

In order to delete a course, first, the Lecture microservice
deletes all lectures related to a given course, then the Artemis
application server takes over to delete the rest of the course-
specific components and the course itself. The so-called Saga
Execution Coordinator [13] is responsible for the coordination
and communication between the individual microservices. The
coordinator in this case uses the Camunda Framework2, which
is a process orchestration tool that can be easily integrated into
a cloud-native application thanks to its extensive Representa-
tional state transfer (REST) API and the ability to containerize
it with Docker3.

A specially developed workflow modelled in Business Pro-
cessing Model Notation (BPMN)4 triggers the lecture deletion
process. The Camunda Database persists this workflow and
controls its execution by providing REST API. It triggers each

1https://angular.io/
2https://camunda.com/
3https://docs.docker.com/
4https://www.bpmn.org/
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Fig. 2. UML component diagram of Artemis distributed transactions coor-
dination using Saga pattern. The Saga Execution Coordinator which uses the
Camunda Framework manages the distributed transactions and communicates
with the microservices through REST API.

action part of the distributed transactions and the compensating
actions if needed. BPMN is similar to a UML activity dia-
gram5. The Camunda Engine provides persisted information
about running workflows, their current status, can intercept
and forward exceptions and provides the history of executed
workflows.

The individual microservices have their databases6, they use
the background workers to pull the status of the workflow,
to avoid double execution through action blocks and to send
messages for the workflow continuation. The workflow must
be modelled in such a way that the workflow actions not only
execute the database transaction if successful, but also start the
compensating transaction if an exception occurs, to keep the
data consistent. There are many use cases which can throw
an exception. For example, the lecture microservice deleted
the related to a course lectures, but the course deletion fails.
This potentially leads to an inconsistent data state that the
compensating action can restore [9].

In the next section, we describe the Architect framework.
We explain its features, semantic model and also the system
design. Then we introduce the overall project generation
process, from when the user uploads the description of Domain
Specific Language (DSL)-based architecture to the Architect
engine to deployment in the Kubernetes cluster.

B. Architect: A Framework for Building Dependable Systems

The microservices have not only advantages but pose
many challenges in local development, deployment complex-

5https://www.uml-diagrams.org/activity-diagrams-reference.html
6https://microservices.io/patterns/data/database-per-service.html

ity, development of cross-cutting domain integration tests.
The migration of the monolithic database to database-per-
microservice pattern adds another challenge with distributed
transactions handling [9]. Thus, the overall complexity in-
creases considerably due to the division of the monolith into
small autonomous units. Therefore, we propose DSL-based so-
lution to support software architects and developers in dealing
with such challenges [14], [15]. The solution is an open-source
framework which leverages an external DSL called Architect
developed for this purpose. Architect helps to integrate the
design patterns in greenfield projects, to reduce the complexity
by automatically generating the required architecture7.

Figure 3 shows the current Architect semantic model,
that contains 6 different domains which help to describe a
dependable software architecture. In the next paragraphs, we
describe the role of these domains in the architecture of the
framework in detail. The semantic model represents the in-
memory object model, that the DSL describes and thus is the
library, that the Architect Domain Language (ADL) populates
[14].

Fig. 3. Architect semantic model. It contains 6 domains with different
purposes that together define a distributed software architecture.

1) Application: The domain allows the defining of differ-
ent application types. They form the core of the generated
solution and provide the possibilities for communication and
data persistence through the definition of endpoints and their
internal databases. We distinguish between 5 different types
of applications that the user can use to build a state-of-the-art
software architecture. These include client application, which
can be either web-based SPA, mobile or desktop application;
gateway, which is responsible for delegating the client requests
to the services; microservice with database and service layers,
constructed internally using ONION architecture [16]; and
event bus to enable asynchronous communication between the
individual services.

2) Solution: The domain defines the project solution struc-
ture, by providing the information about folder hierarchy and
applications. Furthermore, it has information about the git
repository, which will be responsible for the versioning of the
project.

3) Configuration: With help of this domain user can de-
fine the application and solution configurations, including
the folder structure, repository name, the list of different
applications, their configuration and deployment resources.

4) Deployments: In this domain, the user describes the var-
ious resources that the Architect generates during the creation
of the project to enable simple deployment in a cloud-native

7https://docs.microsoft.com/en-us/azure/architecture/patterns/
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environment. These include the docker and docker-compose
files, various Kubernetes resources such as Persistent Volume
Claim (PVC), Workloads, Services, Ingress Controllers, as
well as Secrets and Configmaps. Describing these resources
is very intuitive with Architect, but requires an understanding
of Kubernetes and Docker concepts [7], [10].

5) Entity Model: This semantic model component adds the
persistence layer support. The user can specify a Database
(DB) engine, as well as multiple DB entities, including the
relationships between the individual tables. Currently, Archi-
tect supports only relational databases like MySQL and Post-
greSQL [17]. The individual DB entities can contain multiple
fields of different data types. This flexible construct allows
the definition of a basic DB structure that the responsible
microservice application can use to persist the relevant data.

6) Architectural Patterns: The basic idea behind the devel-
opment of Architect framework is to reduce the complexity
of a distributed system, which can consist of multiple services
that communicate with each other and therefore need support
in complex scenarios. The integration of different microservice
patterns should make this possible. Architect in its current
development state can assist software architects by integration
of Saga pattern8, required for handling of distributed transac-
tions, to ensure the data consistency. Architect modular system
design, which utilizes microservice architecture and its flexible
semantic model, allow adding more patterns with less effort.

The Figure 4 shows the process of the solution generation
using Architect Engine, that contains client and server com-
ponents and provides the complete E2E solution, including
the deployment of the generated artifacts into the Kuber-
netes orchestrated cluster. The frameworks’ server architecture
leverages microservices, each of them contributing to the
overall project generation process. We implemented an online
DSL editor using Angular SPA framework to support users
uploading their DSL-based architecture descriptions. In the
following paragraph, we describe the workflow that illustrates
the use of Architect and generation of a distributed E2E
solution.

First, the user generates and imports the architecture de-
scription created with ADL Editor into Architect Engine
server, which is responsible for the recognition of ADL,
its transformation to semantic model, generation of project
solution, Continuous Integration, Continuous Delivery (CICD)
to the Kubernetes cluster and finally user notification. The
Architect Engine contains multiple microservices responsible
for these different tasks. Architect Compiler uses a grammar
and parser created with ANother Tool for Language Recog-
nition (ANTLR)9 to recognize the imported ADL definition,
transforms this meta information into a Data Transfer Object
(DTO) structure based on the Architect semantic model and
notifies the Architect Generator microservice via an event
bus that it can proceed with project generation.

8https://docs.microsoft.com/en-us/azure/architecture/
reference-architectures/saga/saga/

9https://www.antlr.org/, https://tomassetti.me/antlr-mega-tutorial/

After an internal validation, Architect Generator persists
the DTO structure in the internal DB, and then begins with
the creation of the project structure using Yeoman scaffolding
tool10. Once this process is complete, the Architect Supplier
gets notification, begins the upload of the generated artifacts
to the repository or local storage and their deployment to the
Kubernetes cluster. Architect Generator provides all the nec-
essary Kubernetes resources for deployment, as well as docker-
compose files for the local development and debugging. After
the process is complete, the system sends the notification to
the user, who can then monitor the application state in the
cluster.

Architect offers the ADL edit tool and engine, which
allow the generation of a new project with integration of
microservice patterns. The prototype implementation of Saga
pattern significantly reduces the complexity of the required
software solution, but we can only use it in a greenfield
project. For this reason, we plan to use Architect currently as a
template for the state-of-the-art implementation of orchestrated
Saga pattern in the Artemis LMS case study. We adopt the
business logic of BPMN workflows combined with the power
of a Saga Execution Coordinator [13]. This approach allows
us to build a sustainable solution that solves the challenge with
distributed transactions and reduce significantly the complexity
of the patterns’ integration.

V. RESULTS

The first phase of the migration to microservices included
the extraction of two microservices from the Artemis monolith,
resulting in three microservices applications which set the
foundation of the new microservice architecture. As a result,
we can independently scale each of the new microservices.
This phase did not include splitting the database and migration
to database-per-microservice, though. The first phase was a
proof of concept for the possibility to migrate the Artemis
monolith application to microservices.

After the success of the first phase, follows the second
phase where the focus is on splitting the database, which sug-
gests incremental database migration. The migration concept
consists of several steps. First comes the need to assign the
database repositories to each database, making sure that other
microservices do not have direct access to databases assigned
to other microservices and connect only to their own database.
The next step is to change the data ownership and transfer the
data itself by making sure that the data is consistent.

The implementation of the database-per-microservice pat-
tern poses the challenge of managing distributed transactions,
which the Saga pattern solves. The pattern helps to manage the
distributed transactions by producing events that the Camunda
Engine orchestrates.

The Architect framework helps to reduce the complexity
of the integration of the Saga pattern. Artemis uses it as a
template to solve the challenge with distributed transactions
which is one of the most important challenges [18].

10https://yeoman.io/, https://tomassetti.me/code-generation/
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Fig. 4. The Architect Engine activity diagram. It explains the Architect microservice-based process, which provides the complete E2E solution, including the
deployment of the generated solution artifacts into the Kubernetes orchestrated cluster.

Architect also makes the deployment of the new archi-
tecture easier by generating Kubernetes and docker-compose
files providing the E2E solution which developers can easily
run and deploy in cloud [19]. Moreover, Kubernetes’ self-
healing property by monitoring and automatically restarting
failed containers help for the high availability of the system
[20].

VI. CONCLUSION

In this paper, we introduced the Architect framework that
supports the migration process and enables the creation of a
dependable architecture for the distributed applications. How-
ever, the current state of the framework has much improvement
potential for the existing projects.

For example, developers can only use Architect to create
projects from scratch, so it does not provide a software
evolution approach. For this reason, the case study could use
Architect only as a template for a state-of-the-art implemen-
tation. A software product is constantly evolving, developers
enhance the features set and fix bugs to improve the overall
software quality. Such development activities always address
recurring problems or introduce new challenges that require
the use of design patterns. Thus, there is the need to develop an
automated mechanism for integrating the new design patterns
into the existing software solution.

Furthermore, Architect currently supports only relational
databases, which is an improvement point for later develop-
ment because, especially in the serverless area, developers
often use non-relational alternatives. In addition, Architect
generates dotnet-based services, which can severely limit
developers in their choice of technology stack. Thus, an exten-
sion by adding support for new programming languages and
frameworks will be beneficial. In conclusion, Architect helps
to improve the code quality, saves the development time and
shows the potential for making a significant contribution in the
software evolution research area by approaching the migration
of the existing projects to the dependable architecture.
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