
Recommendations to Create Programming Exercises
to Overcome ChatGPT

1st Jonnathan Berrezueta-Guzman
Technical University of Munich

s.berrezueta@tum.de

2nd Stephan Krusche
Technical University of Munich

krusche@tum.de

Abstract—Large language models, such as ChatGPT, possess
the potential to revolutionize educational practices across vari-
ous domains. Nonetheless, the deployment of these models can
inadvertently foster academic dishonesty due to their facile acces-
sibility. In practical courses like programming, where hands-on
experience is crucial for learning, relying solely on ChatGPT can
hinder students’ ability to engage with the exercises, consequently
impeding the attainment of learning outcomes.

This paper conducts an experimental analysis of GPT 3.5 and
GPT 4, gauging their proficiencies and constraints in resolving
a compendium of 22 programming exercises. We discern and
categorize exercises based on ChatGPT’s ability to furnish viable
solutions, alongside those that remain unaddressed. Moreover,
an evaluation of the malleability of the solutions proposed by
ChatGPT is undertaken. Subsequently, we propound a series
of recommendations aimed at curtailing undue dependence on
ChatGPT, thereby fostering authentic competency development
in programming. The efficaciousness of these recommendations
is underpinned by their integration into the design and delivery
of an examination as part of the corresponding course.

Index Terms—interactive learning, online training, education,
assessment, plagiarism, autograder, large language models

I. INTRODUCTION

ChatGPT gained popularity in the education field during the
latter part of 2022 [1]. Its widespread use has been both lauded
for its potential benefits and a subject of concern. ChatGPT
provides access to information for solving various problems
(mathematics, calculus, physics, etc.), and even generates
written content by simply posing questions in natural language
[2], [3]. It has also been employed for programming resolution
across different programming languages [4].

ChatGPT can analyze a problem statement and provide a so-
lution with an explanation of the provided code [5]. However,
the utilization of this feature has sparked a contentious debate
within the field of computer science education [6]. Concerns
have been raised regarding the potential consequences of
students relying solely on this tool without engaging in critical
thinking or reflection when attempting programming exercises
for homework or exams [7].

In this paper, we evaluate the efficacy of ChatGPT in
solving programming exercises within an introductory pro-
gramming course. The key contribution of this study lies in
the formulation of recommendations that have been tested and
proven effective for instructors in designing exercises within
auto-assessment platforms. The applicability of these recom-

mendations is demonstrated through their implementation in
exercises designed for a final exam.

This paper is structured as follows: Section II provides a
short explanation of Large Language Models (LLMs) and
ChatGPT. Section III presents related work on ChatGPT in
computer science education. Section IV describes the method-
ology employed in this study. Section V presents the results
obtained. Section VI offers a comprehensive discussion along
with recommendations based on the research findings. Finally,
Section VII concludes the study and discusses potential av-
enues for future research.

II. LARGE LANGUAGE MODELS

Large Language Models (LLMs), employing unsupervised
learning on voluminous textual datasets, have revolutionized
Natural Language Processing (NLP) tasks such as suggesting
feedback in textual exercises in large courses [8], generation
of feedback on textual student answers [9], automation of
grading textual student submissions [10] and text generation,
though they present ethical quandaries including biases and
misinformation [11], [12].

Utilizing transformer architectures, LLMs such as OpenAI’s
Generative Pre-trained Transformer (GPT) series are adept at
handling long-range dependencies in language modeling due
to their attention mechanisms [13], [14].

OpenAI’s GPT-4 possess significantly augmented capabili-
ties for handling complex NLP tasks [15], [16]. The integration
of reinforcement learning, utilizing reward signals for decision
optimization through agent-environment interactions, further
bolsters the applicability of LLMs in recommendation systems
[17], [18].

The progression of LLMs underscores the escalating rele-
vance of NLP in AI, striving for sophisticated human-machine
interactions [19].

III. RELATED WORK

ChatGPT has sparked controversy within the education
field. Jalil and his colleagues evaluated ChatGPT’s perfor-
mance in answering common questions from a popular soft-
ware testing curriculum [20]. Results indicate that ChatGPT
provides correct or partially correct answers in 55.6 % of
cases, achieving 53.0 % accuracy in providing explanations.
When prompted in a shared question context, the tool exhibits
a slightly higher rate of correct responses. These findings

https://orcid.org/0000-0001-5559-2056
mailto:s.berrezueta@tum.de
https://orcid.org/0000-0002-4552-644X
mailto:krusche@tum.de
Santiago
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

suggest potential benefits, such as ChatGPT guiding students
through exercises to enhance their comprehension. Notably,
ChatGPT performs best with coding questions, achieving
83.3 % accuracy, followed by conceptual questions at 55.6 %,
and combined questions at 31.3 %.

In another study [21], researchers analyzed response quality
in ChatGPT. While responses were often reliable, there were
instances with misleading information. The study concluded
that while the output quality of ChatGPT is acceptable, there
is room for improvement. Notably, when generating code
from problem statements, the generated code failed to func-
tion correctly when compiled. Participants in the experiment
reported that ChatGPT’s answers were somewhat accurate
but not entirely helpful in solving specific coding problems.
They expressed the need to rely on personal experience and
trial and error. One participant suggested that more specific
specifications would lead to more accurate code generation.

Lau and Guo analyzed cheat detection in a CS1 course
using an autograder [22]. They found that ChatGPT can
easily generate programming code from English specifications.
Results showed that ChatGPT completed approximately 45
hours of work in just about 1 hour through mostly mindless
copy-pasting, achieving an average score of 96 % based on the
auto-grading system. However, the study also observed that the
generated code style often deviated from the class and book
style, utilizing untaught constructs like while(true) loops
with breaks. The instructors were unable to train ChatGPT to
adhere to their class’s specific coding style.

Furthermore, when a single student utilizes ChatGPT across
multiple programs, the code style may differ in ways that
regular students do not exhibit, such as varying indentations
or line spacing. Additionally, although ChatGPT generates
different solutions for different students, it may start to
produce solutions with minor variations, such as variable
name changes. Consequently, students may face accusations
of similarity or plagiarism as ChatGPT cannot generate an
infinite number of distinct solutions.

IV. METHODOLOGY

In this study, we evaluated ChatGPT’s performance (version
3.5 and 4) in solving programming exercises within Artemis,
an automatic grading platform for interactive learning [23],
[24]. The analysis considered the average time invested and
grades achieved by students and the instructor (using Chat-
GPT). We identified key factors that determine the usefulness
or limitations of ChatGPT in programming assignments.

A. Course Selection

We analyzed 22 exercises from an introductory program-
ming course offered in the first semester of the Information
Engineering bachelor’s degree program at the Technical Uni-
versity of Munich (TUM). 65 students participated in the
course. It lasted 12 weeks in the winter semester 2022-2023.
We focused specifically on the homework exercises, which
students had to solve independently and which accounted for
the practical component of the course grade. These exercises

were evaluated using Artemis’ integrated plagiarism check tool
to detect any instances of academic misconduct [25].

The theoretical assessment of the course is a final exam,
where 80 % of the grade is based on solving programming
exercises, and the remaining 20 % is allocated to quiz exer-
cises. The examination follows the recommendations outlined
in this paper. The outcomes are analyzed and discussed.

B. ChatGPT Evaluation

The instructor evaluated the 22 homework exercises using
ChatGPT. The process involved documenting the time spent
on copying and pasting the problem statement, the number
of passed tests, and the points earned. If ChatGPT failed to
achieve a perfect grade in a single attempt, the time required
to complete the exercise by adapting the provided code was
recorded. Additionally, the reasons behind ChatGPT’s inability
to complete the exercise were noted. This data will be used to
compare the performance of students with the use of ChatGPT.

V. RESULTS ANALYSIS

The grades obtained by the students in each assignment
are averaged and compared with the grade obtained by the
instructor using ChatGPT in a single attempt (without adapting
the obtained code) and are compared in Figure 1.

Fig. 1. Comparison between the average grade of students in each exercise
with the grade obtained by ChatGPT in one go (without code adaptation).
Green label: exercises that are impossible to solve by Chat GPT; Orange
label: Exercises very difficult to solve by Chat GPT; Red label: Exercises that
ChatGPT can solve in one go at 100 %.

Based on the results shown in Figure 1, we could answer
which exercise are easy, difficult and impossible for ChatGPT
to solve.

A. What is too easy for ChatGPT?

We identified 4 exercises in that ChatGPT obtained a better
grade than the average grade obtained by the students.

H01E01 - Space Competition. This is a basic exercise for
students to become familiar with the Integrated Development
Environment (IDE) where students are required to output some
text. Therefore, ChatGPT is expected to be able to solve it
completely.

H04E01 - Panic at Burger House. This exercise is based
on the use of the Java collection types, Lists, Stack, and
Queue. It provides a UML diagram to help students recognize
the program structure. From Artemis, it is easy to copy this

diagram and paste it into the ChatGPT input area because takes
the code behind it (SVG image). ChatGPT got everything to
provide a solution that gets 100 % of the grade.

H06E02 - TUM Supermarket. Students must implement
generic data structures. Like H04E01, the given UML di-
agrams make it easy for ChatGPT to create the solution
structure code. In addition, ChatGPT can solve the tasks
separately.

H011E01 - Penguins and Recursions. The problem state-
ment is very formalized and does not require interpretation
and logical implementation. Therefore, ChatGPT solves it
perfectly. The only challenge for a student is to copy Artemis
formulas to the ChatGPT input area.

B. What is very difficult for ChatGPT?

We identify that 3 exercises did not obtain more than 30 %
of the maximum score.

H09E02 - JSON Jobs. ChatGPT understood the exercise
wrongly. It ignored the hints and used other methods. Addi-
tionally, the implementation of a new library forces the student
to adapt to the solution provided by ChatGPT. The required
time to adapt the exercise represents almost the same time to
solve it without ChatGPT.

H010E02 - Calculator. This exercise is based on the
creation of a basic calculator. The GUI part is specified by
images (PNG files). The template provides some classes and
attributes that should be used to develop the graphical part and
the logic part (calculation methods). Once again, ChatGPT
provides arbitrary classes and methods. The student would
spend a lot of time adapting the code.

H011E02 - TUM Triangle. It involves the integration of
GUI and recursion. The specification is conveyed by a GIF
file that illustrates the program’s behavior rendering ChatGPT
incapable of solving this exercise.

C. What is impossible for ChatGPT?

We found that 2 exercises cannot be solved by ChatGPT.
H08E01 - Extending the Game. This exercise builds upon

a preceding one (H03E02 - Fundamentals of a game) with a
pre-existing solution provided in the template. The intricate
nature of the UML diagram perplexes ChatGPT due to its
lack of context. Consequently, the code generated by ChatGPT
is arbitrary and markedly distinct from the template’s code.
Students must refer to the template and review the given
implementation to successfully fulfill the exercise.

H10E01 - GUI Upgrade for the Game. Similar to H08E01,
this exercise relies on the solution of a prior exercise. The
template already contains the solution, and the student’s task
is to implement the GUI component. However, ChatGPT lacks
awareness of this requirement, leading to confusion and the
provision of an implementation that fails. This occurs because
ChatGPT employs arbitrary parameters and methods.

D. Learning outcome concerns

By analyzing the grades in Figure 1 we obtain that the
overall average grade for the course is 86.4 %, while the over-
all average grade obtained by the instructor using ChatGPT

in one-go is 55 % (minimum grade for passing is 50 %).
We can deduce that a student using ChatGPT could pass an
introductory programming course without any reinforcement
at all. This would lead to problems later on in subsequent
subjects in the Bachelor’s program.

VI. FINDINGS

The learning of programming depends mostly on the prac-
tice [26] and ChatGPT seems to represent a threat to this.

Finding 1: With no change in usage, ChatGPT facilitated
a 91 % reduction in time invested in solving 22 assign-
ments. Refining the code for full grading still resulted in
time savings of 74 % below the student average.

This finding poses a significant pedagogical challenge, as
programming proficiencies are inherently iterative and ne-
cessitate substantial practice for maturation [27]. Therefore,
based on the analysis of the results, we provide a set of
recommendations o create programming exercises to overcome
ChatGPT.

A. Recomendations

1) Reduce the problem statement. It should be concise,
avoiding excessive details and excluding project structure
explanations. Consequently, ChatGPT lacks sufficient context
and may generate arbitrary code based on its understanding.
As a result, students must modify the provided code to align
with their requirements.

2) Add TODOs comments in the template. Distributing
them across multiple files (classes) complicates the process
for students to gather all the required information in a single
location for direct copy-pasting into ChatGPT.

3) Provide a preview implementation. Template files
include partial implementation. This approach compels stu-
dents to review not only the problem statement but also
the template, familiarizing themselves with the programming
style and correct program structure. Notably, exercises like
H08E01 and H10E01 prompted students to question whether
it was more advantageous to solve them using ChatGPT or
independently. Our analysis revealed that adapting the arbitrary
code generated by ChatGPT in these exercises required more
time than solving them manually.

4) Use image files in the problem statement. PNG, GIF,
or JPG files as visual representations of the resulting program
make ChatGPT unable to interpret the context, resulting in the
generation of arbitrary code. As a consequence, students may
question the usefulness of ChatGPT when it comes to adapting
the code based on these visual representations.

5) Use hidden test cases. Test cases are revealed to students
only after the deadline. This practice compels students to
independently verify the correctness of their solutions and not
solely rely on continuous feedback.

6) Use dynamic test cases. where the input data varies with
each test execution. This approach requires students to develop
robust solutions that can handle diverse conditions, instead of

relying on a static solution generated by an AI. However, it
may involve additional effort for the instructors.

7) Evaluate efficiency. Monitor the runtime and memory
usage of students’ programs to emphasize the importance of
efficiency. This approach ensures that submissions not only
meet the functional requirements.

8) Assess the quality of the code. Such as adherence to
programming style guidelines, understandability, and modu-
larity. Students will write their code carefully and reflectively,
rather than simply copying an AI-generated solution.

9) Ask for documentation. Require students to provide
code comments and written documentation outlining their so-
lution. This practice fosters comprehension of the assignment
and discourages direct copying of AI-generated solutions.

10) Customize the task. Incorporate explicit exercise
requirements that diminish the likelihood of a typical AI-
generated solution. This can be achieved by stipulating the
utilization of specific algorithms or data structures.

11) Do a plagiarism check. This approach aids in iden-
tifying potential AI-generated or plagiarized solutions. It is
important to note that while ChatGPT can generate multiple
solutions, they may exhibit similarities or repetitions after a
certain number of iterations.

Depending on the exercise, these recommendations can be
applied to mitigate the use of ChatGPT by students. Therefore,
we have created a final exam to test these recommendations.

B. Application of the recommendations in the preparation of
individual examination

The final examination incorporates these recommendations.
The exam consists of a single quiz exercise and three pro-
gramming exercises, accounting for 20 % and 80 % of the
total evaluation weightage, respectively.

TABLE I
INDIVIDUAL EXAMINATION EXERCISES.

Exercise Grade percentage Type
Quiz exercise 20 % Questions

Object-Oriented Programming 18 % Coding
Graphical User Interface 35 % Coding

Streams 27 % Coding

1) Object-Oriented Programming. This exercise follows
recommendations 1-5, and 11. The problem statement and the
principal task of this exercise are reduced. The provided UML
diagram is a PNG file. Additionally, the provided template
implements already some classes (3 out of 8) of the UML
diagram. Finally, a plagiarism check is conducted.

2) Graphical User Interface. This exercise also follows the
previous recommendations. The problem statement is reduced
and 2 graphics are presented: registration form view and
information view. Additionally, one animated GIF is presented
where students can see the behavior of the controls (buttons,
text fields, and labels). The template provides the attribute’s
names and the structure. The student must complete the im-
plementation following the TODO comments in the template
code.

3) Streams. This exercise incorporates prior recommenda-
tions by reducing the problem statement and including a UML
diagram as a PNG file. The provided template already includes
partial implementation, prompting students to compare the
UML diagram with the code and complete the implementation
according to the provided TODO comments.

Finding 2: Exercises that followed these recommen-
dations were identified as unsolvable with ChatGPT
alone because the time required for code adaptation
significantly exceeded the expected solution time without
ChatGPT (approximately 30 % more).

The exam did not present real-time feedback; it solely
indicates whether students’ code successfully compiles or not.
Additionally, it was conducted onsite under supervision to
prevent any form of academic dishonesty. The average grade
is shown in Table II.

TABLE II
EXAMINATION RESULTS.

Exercise Grade average percentage
Quiz exercise 68.8 % (13.4 / 20)

Object-Oriented Programming 64.9 % (11.7 / 18)
Graphical User Interface 53 % (18.6 / 35)

Streams 52.8 % (14.3 / 27)

Finding 3: Grade and pass rate disparities between
practical (1.7, 73.8 %) and final exam (2.7, 54.4 %)
components, coupled with negative plagiarism checks,
indicate ChatGPT exploitation in practical exercises.

However, conclusively proving this hypothesis poses signif-
icant challenges and the methodology presented in [22] would
require significant instructor effort. Future work involves de-
veloping a feature in Artemis that can detect ChatGPT usage
or provide guidelines to create exercises that are resistant to
ChatGPT. Meanwhile, the following additional recommenda-
tions can be considered:

1) Plagiarism detection software can help to identify
similarities and detect cheating. However, it is not able to
detect if students use ChatGPT for coding [28], [29].

2) Manual code review allows to detect unusual patterns,
style inconsistencies, or suspicious comments. This method
can be time consuming and is only effective in smaller groups.

3) Comprehension questions and code reviews can ensure
that students understand the submitted code and its concepts.

4) Assignment variation makes cheating more difficult.
However, this could work only with a small group of students.

5) Pair or group work encourages student engagement
and facilitates knowledge sharing among peers. However, it
is crucial to ensure that each student actively contributes and
avoids undue dependency.

6) Monitoring online resources can identify suspicious
activities, such as sharing of homework solutions on platforms,
forums, and social media, but might be time consuming.

VII. CONCLUSION AND FUTURE WORK

This paper analyzed how well GPT 3.5 and 4 can solve
several typical student tasks in a first semester programming
course. Based on this analysis, it categorizes tasks that are
easy, difficult, and impossible for ChatGPT to solve. It derives
recommendations and best practices for instructors to verify
academic integrity and minimize opportunities for deception.

Employing the provided recommendations in the creation
of exercises for an exam (that included images, concise prob-
lem statements, and template code) hindered students from
using ChatGPT, as they couldn’t simply copy and paste the
requirements. These recommendations can be applied to other
programming courses and exercises involving text or model
generation, such as UML diagrams.

We perceive ChatGPT as a tool that can negatively affect
learning outcomes in programming courses if misused. Stu-
dents who solve exercises without analyzing and reflecting
on the problem may face long-term issues in their academic
and professional lives. Therefore, this paper contributes with
suitable recommendations to prevent self-deception resulting
from improper ChatGPT use.

While some universities have banned ChatGPT due to
concerns over cheating, others have adopted approaches with
clear guidelines. Given the evolving nature of AI, further
discussion and research on ethical implications are necessary.
Universities need to develop policies for the responsible and
ethical use of AI models like ChatGPT, clearly communicating
the ethical aspects and setting defined boundaries [30].

We think that AI tools should be used to complement
personal effort and learning, not replace it. Establishing prin-
ciples, policies, and codes of conduct is essential to ensure
that the role of AI in improving learning and support is both
responsible and ethical.

We consider that future LLMs (e.g., GPT-5, or fine-tuned
versions specific for education) may become even more pow-
erful. Then, the recommendations provided in this paper need
to be re-evaluated and adapted accordingly. In the future, we
plan to analyze how valuable LLMs can support the learn-
ing experience in project-based software engineering courses
with more creative programming tasks, for example based on
chaordic learning [31].

REFERENCES

[1] E. Kasneci et al., “Chatgpt for good? on opportunities and challenges
of large language models for education,” Learning and Individual
Differences, vol. 103, 2023.

[2] B. D. Lund and T. Wang, “Chatting about chatgpt: how may ai and gpt
impact academia and libraries?,” Library Hi Tech News, vol. 40, no. 3,
pp. 26–29, 2023.

[3] L. Bishop, “A computer wrote this paper: What chatgpt means for
education, research, and writing,” Research and Writing, 2023.

[4] N. M. S. Surameery and M. Y. Shakor, “Use chat gpt to solve
programming bugs,” International Journal of Information Technology
& Computer Engineering, vol. 3, no. 01, pp. 17–22, 2023.

[5] D. Sobania, M. Briesch, C. Hanna, and J. Petke, “An analysis of the au-
tomatic bug fixing performance of chatgpt,” arXiv preprint:2301.08653,
2023.

[6] S. Biswas, “Role of chatgpt in computer programming.: Chatgpt in
computer programming.,” Mesopotamian Journal of Computer Science,
vol. 2023, pp. 8–16, 2023.

[7] D. R. Cotton, P. A. Cotton, and J. R. Shipway, “Chatting and cheating:
Ensuring academic integrity in the era of chatgpt,” EdArXiv, 2023.

[8] J. P. Bernius, S. Krusche, and B. Bruegge, “A machine learning approach
for suggesting feedback in textual exercises in large courses,” in 8th
Conference on Learning at Scale, pp. 173–182, 2021.

[9] J. P. Bernius, S. Krusche, and B. Bruegge, “Machine learning based
feedback on textual student answers in large courses,” Computers and
Education: Artificial Intelligence, vol. 3, 2022.

[10] J. P. Bernius, A. Kovaleva, S. Krusche, and B. Bruegge, “Towards the
automation of grading textual student submissions to open-ended ques-
tions,” in 4th European Conference on Software Engineering Education,
pp. 61–70, 2020.

[11] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[12] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[13] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint:1810.04805, 2018.

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[15] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray, et al., “Training language
models to follow instructions with human feedback,” Advances in Neural
Information Processing Systems, vol. 35, 2022.

[16] O. Analytica, “Gpt-4 underlines mismatch on ai policy and innovation,”
Emerald Expert Briefings, 2023.

[17] R. Sutton and A. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[18] A. Koubaa, “Gpt-4 vs. gpt-3.5: A concise showdown,” 2023.
[19] M. Binz and E. Schulz, “Using cognitive psychology to understand gpt-

3,” National Academy of Sciences, vol. 120, no. 6, 2023.
[20] S. Jalil, S. Rafi, T. D. LaToza, K. Moran, and W. Lam, “Chatgpt

and software testing education: Promises & perils,” in International
Conference on Software Testing, Verification and Validation Workshops,
pp. 4130–4137, IEEE, 2023.

[21] A. Tlili, B. Shehata, M. A. Adarkwah, A. Bozkurt, D. T. Hickey,
R. Huang, and B. Agyemang, “What if the devil is my guardian angel:
Chatgpt as a case study of using chatbots in education,” Smart Learning
Environments, vol. 10, no. 1, p. 15, 2023.

[22] S. Lau and P. Guo, “From” ban it till we understand it” to” resistance is
futile”: How university programming instructors plan to adapt as more
students use ai code generation and explanation tools such as chatgpt
and github copilot,” 2023.

[23] S. Krusche and A. Seitz, “ArTEMiS: An Automatic Assessment Man-
agement System for Interactive Learning,” in 49th Technical Symposium
on Computer Science Education, pp. 284–289, ACM, 2018.

[24] S. Krusche and A. Seitz, “Increasing the interactivity in software
engineering moocs - A case study,” in 52nd Hawaii International
Conference on System Sciences, pp. 1–10, 2019.

[25] S. Krusche, “Interactive learning - A Scalable and Adaptive Learning
Approach for Large Courses,” Habilitation, Technical University of
Munich, 2021.

[26] A. Robins, J. Rountree, and N. Rountree, “Learning and teaching
programming: A review and discussion,” Computer science education,
vol. 13, no. 2, pp. 137–172, 2003.

[27] R. P. Medeiros, G. L. Ramalho, and T. P. Falcão, “A systematic literature
review on teaching and learning introductory programming in higher
education,” Transactions on Education, vol. 62, no. 2, pp. 77–90, 2018.

[28] L. Prechelt, G. Malpohl, M. Philippsen, et al., “Finding plagiarisms
among a set of programs with jplag.,” vol. 8, no. 11, p. 1016, 2002.

[29] D. Rusch, T. Lancaster, and A. Gervais, “Detecting source code plagia-
rism from online software repositories,” 2022.

[30] D. Mhlanga, “Open ai in education, the responsible and ethical use of
chatgpt towards lifelong learning,” 2023.

[31] S. Krusche, B. Bruegge, I. Camilleri, K. Krinkin, A. Seitz, and
C. Wöbker, “Chaordic Learning: A Case Study,” in 39th International
Conference on Software Engineering: Software Engineering Education
and Training, pp. 87–96, IEEE, 2017.

	Introduction
	Large Language Models
	Related Work
	Methodology
	Course Selection
	ChatGPT Evaluation

	Results Analysis
	What is too easy for ChatGPT?
	What is very difficult for ChatGPT?
	What is impossible for ChatGPT?
	Learning outcome concerns

	Findings
	Recomendations
	Application of the recommendations in the preparation of individual examination

	Conclusion and Future Work
	References

